3.5.88 \(\int \sec ^5(c+d x) (a+b \sin (c+d x))^{3/2} \, dx\) [488]

3.5.88.1 Optimal result
3.5.88.2 Mathematica [A] (verified)
3.5.88.3 Rubi [A] (verified)
3.5.88.4 Maple [A] (verified)
3.5.88.5 Fricas [B] (verification not implemented)
3.5.88.6 Sympy [F(-1)]
3.5.88.7 Maxima [F(-2)]
3.5.88.8 Giac [F(-1)]
3.5.88.9 Mupad [F(-1)]

3.5.88.1 Optimal result

Integrand size = 23, antiderivative size = 188 \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^{3/2} \, dx=-\frac {3 \left (4 a^2-2 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a-b}}\right )}{32 \sqrt {a-b} d}+\frac {3 \left (4 a^2+2 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b}}\right )}{32 \sqrt {a+b} d}-\frac {\sec ^2(c+d x) (b-6 a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{16 d}+\frac {\sec ^4(c+d x) (b+a \sin (c+d x)) \sqrt {a+b \sin (c+d x)}}{4 d} \]

output
-3/32*(4*a^2-2*a*b-b^2)*arctanh((a+b*sin(d*x+c))^(1/2)/(a-b)^(1/2))/d/(a-b 
)^(1/2)+3/32*(4*a^2+2*a*b-b^2)*arctanh((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2)) 
/d/(a+b)^(1/2)-1/16*sec(d*x+c)^2*(b-6*a*sin(d*x+c))*(a+b*sin(d*x+c))^(1/2) 
/d+1/4*sec(d*x+c)^4*(b+a*sin(d*x+c))*(a+b*sin(d*x+c))^(1/2)/d
 
3.5.88.2 Mathematica [A] (verified)

Time = 1.62 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.58 \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^{3/2} \, dx=-\frac {3 \sqrt {a-b} (a+b)^2 \left (4 a^3-6 a^2 b+a b^2+b^3\right ) \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a-b}}\right )-3 (a-b)^2 \sqrt {a+b} \left (4 a^3+6 a^2 b+a b^2-b^3\right ) \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b}}\right )+8 \left (-a^2+b^2\right ) \sec ^4(c+d x) (-b+a \sin (c+d x)) (a+b \sin (c+d x))^{5/2}+2 \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \left (5 a^2 b-3 b^3+\left (-6 a^3+4 a b^2\right ) \sin (c+d x)\right )-2 b \sqrt {a+b \sin (c+d x)} \left (12 a^4-13 a^2 b^2+3 b^4+\left (6 a^3 b-4 a b^3\right ) \sin (c+d x)\right )}{32 \left (a^2-b^2\right )^2 d} \]

input
Integrate[Sec[c + d*x]^5*(a + b*Sin[c + d*x])^(3/2),x]
 
output
-1/32*(3*Sqrt[a - b]*(a + b)^2*(4*a^3 - 6*a^2*b + a*b^2 + b^3)*ArcTanh[Sqr 
t[a + b*Sin[c + d*x]]/Sqrt[a - b]] - 3*(a - b)^2*Sqrt[a + b]*(4*a^3 + 6*a^ 
2*b + a*b^2 - b^3)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b]] + 8*(-a^2 
 + b^2)*Sec[c + d*x]^4*(-b + a*Sin[c + d*x])*(a + b*Sin[c + d*x])^(5/2) + 
2*Sec[c + d*x]^2*(a + b*Sin[c + d*x])^(5/2)*(5*a^2*b - 3*b^3 + (-6*a^3 + 4 
*a*b^2)*Sin[c + d*x]) - 2*b*Sqrt[a + b*Sin[c + d*x]]*(12*a^4 - 13*a^2*b^2 
+ 3*b^4 + (6*a^3*b - 4*a*b^3)*Sin[c + d*x]))/((a^2 - b^2)^2*d)
 
3.5.88.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.59, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 3147, 495, 27, 686, 27, 654, 25, 1480, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) (a+b \sin (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \sin (c+d x))^{3/2}}{\cos (c+d x)^5}dx\)

\(\Big \downarrow \) 3147

\(\displaystyle \frac {b^5 \int \frac {(a+b \sin (c+d x))^{3/2}}{\left (b^2-b^2 \sin ^2(c+d x)\right )^3}d(b \sin (c+d x))}{d}\)

\(\Big \downarrow \) 495

\(\displaystyle \frac {b^5 \left (\frac {\sqrt {a+b \sin (c+d x)} \left (a b \sin (c+d x)+b^2\right )}{4 b^2 \left (b^2-b^2 \sin ^2(c+d x)\right )^2}-\frac {\int -\frac {6 a^2+5 b \sin (c+d x) a-b^2}{2 \sqrt {a+b \sin (c+d x)} \left (b^2-b^2 \sin ^2(c+d x)\right )^2}d(b \sin (c+d x))}{4 b^2}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b^5 \left (\frac {\int \frac {6 a^2+5 b \sin (c+d x) a-b^2}{\sqrt {a+b \sin (c+d x)} \left (b^2-b^2 \sin ^2(c+d x)\right )^2}d(b \sin (c+d x))}{8 b^2}+\frac {\sqrt {a+b \sin (c+d x)} \left (a b \sin (c+d x)+b^2\right )}{4 b^2 \left (b^2-b^2 \sin ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 686

\(\displaystyle \frac {b^5 \left (\frac {-\frac {\int -\frac {3 \left (4 a^4-5 b^2 a^2+2 b \left (a^2-b^2\right ) \sin (c+d x) a+b^4\right )}{2 \sqrt {a+b \sin (c+d x)} \left (b^2-b^2 \sin ^2(c+d x)\right )}d(b \sin (c+d x))}{2 b^2 \left (a^2-b^2\right )}-\frac {\sqrt {a+b \sin (c+d x)} \left (b^2 \left (a^2-b^2\right )-6 a b \left (a^2-b^2\right ) \sin (c+d x)\right )}{2 b^2 \left (a^2-b^2\right ) \left (b^2-b^2 \sin ^2(c+d x)\right )}}{8 b^2}+\frac {\sqrt {a+b \sin (c+d x)} \left (a b \sin (c+d x)+b^2\right )}{4 b^2 \left (b^2-b^2 \sin ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b^5 \left (\frac {\frac {3 \int \frac {4 a^4-5 b^2 a^2+2 b \left (a^2-b^2\right ) \sin (c+d x) a+b^4}{\sqrt {a+b \sin (c+d x)} \left (b^2-b^2 \sin ^2(c+d x)\right )}d(b \sin (c+d x))}{4 b^2 \left (a^2-b^2\right )}-\frac {\sqrt {a+b \sin (c+d x)} \left (b^2 \left (a^2-b^2\right )-6 a b \left (a^2-b^2\right ) \sin (c+d x)\right )}{2 b^2 \left (a^2-b^2\right ) \left (b^2-b^2 \sin ^2(c+d x)\right )}}{8 b^2}+\frac {\sqrt {a+b \sin (c+d x)} \left (a b \sin (c+d x)+b^2\right )}{4 b^2 \left (b^2-b^2 \sin ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 654

\(\displaystyle \frac {b^5 \left (\frac {\frac {3 \int -\frac {2 a^4-3 b^2 a^2+2 b^2 \left (a^2-b^2\right ) \sin ^2(c+d x) a+b^4}{b^4 \sin ^4(c+d x)-2 a b^2 \sin ^2(c+d x)+a^2-b^2}d\sqrt {a+b \sin (c+d x)}}{2 b^2 \left (a^2-b^2\right )}-\frac {\sqrt {a+b \sin (c+d x)} \left (b^2 \left (a^2-b^2\right )-6 a b \left (a^2-b^2\right ) \sin (c+d x)\right )}{2 b^2 \left (a^2-b^2\right ) \left (b^2-b^2 \sin ^2(c+d x)\right )}}{8 b^2}+\frac {\sqrt {a+b \sin (c+d x)} \left (a b \sin (c+d x)+b^2\right )}{4 b^2 \left (b^2-b^2 \sin ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b^5 \left (\frac {-\frac {3 \int \frac {2 a^4-3 b^2 a^2+2 b^2 \left (a^2-b^2\right ) \sin ^2(c+d x) a+b^4}{b^4 \sin ^4(c+d x)-2 a b^2 \sin ^2(c+d x)+a^2-b^2}d\sqrt {a+b \sin (c+d x)}}{2 b^2 \left (a^2-b^2\right )}-\frac {\sqrt {a+b \sin (c+d x)} \left (b^2 \left (a^2-b^2\right )-6 a b \left (a^2-b^2\right ) \sin (c+d x)\right )}{2 b^2 \left (a^2-b^2\right ) \left (b^2-b^2 \sin ^2(c+d x)\right )}}{8 b^2}+\frac {\sqrt {a+b \sin (c+d x)} \left (a b \sin (c+d x)+b^2\right )}{4 b^2 \left (b^2-b^2 \sin ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {b^5 \left (\frac {\frac {3 \left (\frac {\left (a^2-b^2\right ) \left (4 a^2-2 a b-b^2\right ) \int \frac {1}{b^2 \sin ^2(c+d x)-a+b}d\sqrt {a+b \sin (c+d x)}}{2 b}-\frac {\left (a^2-b^2\right ) \left (4 a^2+2 a b-b^2\right ) \int \frac {1}{b^2 \sin ^2(c+d x)-a-b}d\sqrt {a+b \sin (c+d x)}}{2 b}\right )}{2 b^2 \left (a^2-b^2\right )}-\frac {\sqrt {a+b \sin (c+d x)} \left (b^2 \left (a^2-b^2\right )-6 a b \left (a^2-b^2\right ) \sin (c+d x)\right )}{2 b^2 \left (a^2-b^2\right ) \left (b^2-b^2 \sin ^2(c+d x)\right )}}{8 b^2}+\frac {\sqrt {a+b \sin (c+d x)} \left (a b \sin (c+d x)+b^2\right )}{4 b^2 \left (b^2-b^2 \sin ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {b^5 \left (\frac {\frac {3 \left (\frac {\left (a^2-b^2\right ) \left (4 a^2+2 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b}}\right )}{2 b \sqrt {a+b}}-\frac {\left (a^2-b^2\right ) \left (4 a^2-2 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a-b}}\right )}{2 b \sqrt {a-b}}\right )}{2 b^2 \left (a^2-b^2\right )}-\frac {\sqrt {a+b \sin (c+d x)} \left (b^2 \left (a^2-b^2\right )-6 a b \left (a^2-b^2\right ) \sin (c+d x)\right )}{2 b^2 \left (a^2-b^2\right ) \left (b^2-b^2 \sin ^2(c+d x)\right )}}{8 b^2}+\frac {\sqrt {a+b \sin (c+d x)} \left (a b \sin (c+d x)+b^2\right )}{4 b^2 \left (b^2-b^2 \sin ^2(c+d x)\right )^2}\right )}{d}\)

input
Int[Sec[c + d*x]^5*(a + b*Sin[c + d*x])^(3/2),x]
 
output
(b^5*((Sqrt[a + b*Sin[c + d*x]]*(b^2 + a*b*Sin[c + d*x]))/(4*b^2*(b^2 - b^ 
2*Sin[c + d*x]^2)^2) + ((3*(-1/2*((a^2 - b^2)*(4*a^2 - 2*a*b - b^2)*ArcTan 
h[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a - b]])/(Sqrt[a - b]*b) + ((a^2 - b^2)*(4 
*a^2 + 2*a*b - b^2)*ArcTanh[Sqrt[a + b*Sin[c + d*x]]/Sqrt[a + b]])/(2*b*Sq 
rt[a + b])))/(2*b^2*(a^2 - b^2)) - (Sqrt[a + b*Sin[c + d*x]]*(b^2*(a^2 - b 
^2) - 6*a*b*(a^2 - b^2)*Sin[c + d*x]))/(2*b^2*(a^2 - b^2)*(b^2 - b^2*Sin[c 
 + d*x]^2)))/(8*b^2)))/d
 

3.5.88.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 495
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(a*d - b*c*x)*(c + d*x)^(n - 1)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] - 
 Simp[1/(2*a*b*(p + 1))   Int[(c + d*x)^(n - 2)*(a + b*x^2)^(p + 1)*Simp[a* 
d^2*(n - 1) - b*c^2*(2*p + 3) - b*c*d*(n + 2*p + 2)*x, x], x], x] /; FreeQ[ 
{a, b, c, d}, x] && LtQ[p, -1] && GtQ[n, 1] && IntQuadraticQ[a, 0, b, c, d, 
 n, p, x]
 

rule 654
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), 
x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d* 
x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x]
 

rule 686
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(f*a*c*e - a*g*c*d + c*(c*d*f + 
a*e*g)*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[ 
1/(2*a*c*(p + 1)*(c*d^2 + a*e^2))   Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Sim 
p[f*(c^2*d^2*(2*p + 3) + a*c*e^2*(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f 
+ a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ 
[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3147
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^m*(b^2 - x^2)^((p - 1) 
/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && IntegerQ[(p 
 - 1)/2] && NeQ[a^2 - b^2, 0]
 
3.5.88.4 Maple [A] (verified)

Time = 1.86 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.15

method result size
default \(-\frac {2 b^{5} \left (-\frac {-\frac {\sqrt {a +b \sin \left (d x +c \right )}\, b^{2} \left (6 a \sin \left (d x +c \right )-b \sin \left (d x +c \right )+8 a -3 b \right )}{4 \left (b \sin \left (d x +c \right )+b \right )^{2}}+\frac {3 \left (4 a^{2}-2 a b -b^{2}\right ) \arctan \left (\frac {\sqrt {a +b \sin \left (d x +c \right )}}{\sqrt {-a +b}}\right )}{4 \sqrt {-a +b}}}{16 b^{5}}+\frac {\frac {\sqrt {a +b \sin \left (d x +c \right )}\, b^{2} \left (6 a \sin \left (d x +c \right )+b \sin \left (d x +c \right )-8 a -3 b \right )}{4 \left (b \sin \left (d x +c \right )-b \right )^{2}}-\frac {3 \left (4 a^{2}+2 a b -b^{2}\right ) \operatorname {arctanh}\left (\frac {\sqrt {a +b \sin \left (d x +c \right )}}{\sqrt {a +b}}\right )}{4 \sqrt {a +b}}}{16 b^{5}}\right )}{d}\) \(217\)

input
int(sec(d*x+c)^5*(a+b*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-2*b^5*(-1/16/b^5*(-1/4*(a+b*sin(d*x+c))^(1/2)*b^2*(6*a*sin(d*x+c)-b*sin(d 
*x+c)+8*a-3*b)/(b*sin(d*x+c)+b)^2+3/4*(4*a^2-2*a*b-b^2)/(-a+b)^(1/2)*arcta 
n((a+b*sin(d*x+c))^(1/2)/(-a+b)^(1/2)))+1/16/b^5*(1/4*(a+b*sin(d*x+c))^(1/ 
2)*b^2*(6*a*sin(d*x+c)+b*sin(d*x+c)-8*a-3*b)/(b*sin(d*x+c)-b)^2-3/4*(4*a^2 
+2*a*b-b^2)/(a+b)^(1/2)*arctanh((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2))))/d
 
3.5.88.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 462 vs. \(2 (166) = 332\).

Time = 0.65 (sec) , antiderivative size = 2397, normalized size of antiderivative = 12.75 \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^{3/2} \, dx=\text {Too large to display} \]

input
integrate(sec(d*x+c)^5*(a+b*sin(d*x+c))^(3/2),x, algorithm="fricas")
 
output
[-1/256*(3*(4*a^3 - 2*a^2*b - 3*a*b^2 + b^3)*sqrt(a + b)*cos(d*x + c)^4*lo 
g((b^4*cos(d*x + c)^4 + 128*a^4 + 256*a^3*b + 320*a^2*b^2 + 256*a*b^3 + 72 
*b^4 - 8*(20*a^2*b^2 + 28*a*b^3 + 9*b^4)*cos(d*x + c)^2 - 8*(16*a^3 + 24*a 
^2*b + 20*a*b^2 + 8*b^3 - (10*a*b^2 + 7*b^3)*cos(d*x + c)^2 - (b^3*cos(d*x 
 + c)^2 - 24*a^2*b - 28*a*b^2 - 8*b^3)*sin(d*x + c))*sqrt(b*sin(d*x + c) + 
 a)*sqrt(a + b) + 4*(64*a^3*b + 112*a^2*b^2 + 64*a*b^3 + 14*b^4 - (8*a*b^3 
 + 7*b^4)*cos(d*x + c)^2)*sin(d*x + c))/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 
 + 4*(cos(d*x + c)^2 - 2)*sin(d*x + c) + 8)) + 3*(4*a^3 + 2*a^2*b - 3*a*b^ 
2 - b^3)*sqrt(a - b)*cos(d*x + c)^4*log((b^4*cos(d*x + c)^4 + 128*a^4 - 25 
6*a^3*b + 320*a^2*b^2 - 256*a*b^3 + 72*b^4 - 8*(20*a^2*b^2 - 28*a*b^3 + 9* 
b^4)*cos(d*x + c)^2 + 8*(16*a^3 - 24*a^2*b + 20*a*b^2 - 8*b^3 - (10*a*b^2 
- 7*b^3)*cos(d*x + c)^2 - (b^3*cos(d*x + c)^2 - 24*a^2*b + 28*a*b^2 - 8*b^ 
3)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(a - b) + 4*(64*a^3*b - 112* 
a^2*b^2 + 64*a*b^3 - 14*b^4 - (8*a*b^3 - 7*b^4)*cos(d*x + c)^2)*sin(d*x + 
c))/(cos(d*x + c)^4 - 8*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2)*sin(d*x + 
c) + 8)) - 16*(4*a^2*b - 4*b^3 - (a^2*b - b^3)*cos(d*x + c)^2 + 2*(2*a^3 - 
 2*a*b^2 + 3*(a^3 - a*b^2)*cos(d*x + c)^2)*sin(d*x + c))*sqrt(b*sin(d*x + 
c) + a))/((a^2 - b^2)*d*cos(d*x + c)^4), -1/256*(6*(4*a^3 - 2*a^2*b - 3*a* 
b^2 + b^3)*sqrt(-a - b)*arctan(-1/4*(b^2*cos(d*x + c)^2 - 8*a^2 - 8*a*b - 
2*b^2 - 2*(4*a*b + 3*b^2)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a)*sqrt(-...
 
3.5.88.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^{3/2} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**5*(a+b*sin(d*x+c))**(3/2),x)
 
output
Timed out
 
3.5.88.7 Maxima [F(-2)]

Exception generated. \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^{3/2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(sec(d*x+c)^5*(a+b*sin(d*x+c))^(3/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a-4*b>0)', see `assume?` for m 
ore detail
 
3.5.88.8 Giac [F(-1)]

Timed out. \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^{3/2} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)^5*(a+b*sin(d*x+c))^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.5.88.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^5(c+d x) (a+b \sin (c+d x))^{3/2} \, dx=\int \frac {{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^5} \,d x \]

input
int((a + b*sin(c + d*x))^(3/2)/cos(c + d*x)^5,x)
 
output
int((a + b*sin(c + d*x))^(3/2)/cos(c + d*x)^5, x)